Data employed:

A random sample of size 8000 from Krish's overall file
A random sample of size 8000 from Krish's ancient repeat file

Neutral g scores are defined as:

$$
\begin{aligned}
& \text { sqrt(neut_n)*(neut_pid-ave(neut_pid)) / } \\
& \text { sd(sqrt(neut_n)*(neut_pid-ave(neut_pid)) }
\end{aligned}
$$

All g scores are defined as:

$$
\begin{aligned}
& \text { sqrt(all_n)*(all_pid-ave(neut_pid)) / } \\
& \text { sd(sqrt(neut_n)*(neut_pid-ave(neut_pid)) }
\end{aligned}
$$

(using neutral centering and rescaling coefficients)

The mixture model is:

$$
\mathrm{f} _ \text {all }(\mathrm{g})=\text { p_o f_neut }(\mathrm{g})+\left(1-\mathrm{p} _o\right) \mathrm{f} _ \text {sel }(\mathrm{g})
$$

Using the observations available from f_{-}all and f _neut, we create smoothed densities, and thus estimate p_o and the unobserved f_sel.

Gaussian Kernel smoothed densities for neutral g (black) and all g (red), implemented in S+ with width parameter=0.5 (associated st err $\sim 0.5 / 4$). The blue curve is the ratio of overall density to neutral density. The blue horizontal line represent minimum (0.46034), first quartile (0.73760) and median (0.79626) of ratio values below 1 that fall in the "relevant range" (where the neutral density is not ~ 0).

Theoretically, the share of all g compatible with neutrality (p_o) ought to be the minimum value of the ratio:

$$
\mathrm{p} _\mathrm{o}=\min \quad \mathrm{f} _ \text {all }(\mathrm{g}) / \mathrm{f} _ \text {neut }(\mathrm{g})
$$

A pragmatic estimate of it should fall between 0.46 and 0.79 , and reasonably be around 0.73 . This would correspond to estimating the functional share, for the portion of the genome covered by the alignment data, to be between 0.54 and 0.21 , reasonably around 0.27 .

The black and red curve represent again neutral and all g smoothed densities. The other curves represent densities for functional g , when using $\mathrm{p}_{-} \mathrm{o}=$ median (green), first quartile (blue) and min (cyan). These are computed as

$$
\mathrm{f} _ \text {sell }(\mathrm{g})=\left(\mathrm{f} _ \text {all }(\mathrm{g})-\mathrm{p} _ \text {o f_neut }(\mathrm{g})\right) /\left(1-\mathrm{p} _\mathrm{o}\right)
$$

Notice how the median estimate would put a non negligible portion of the curve below 0 .

David's estimate rationale corresponds to "mirroring" the branch of the red curve (all g) that is on the left of 0 to the right, and measure what area remains unexplained on the right of 0 . This is even more conservative than the median estimate here, producing a p_o above 0.80 (and thus a figure for the functional share below 0.20).

The curves represent the probability of being under selection (coming from f _sel) at various levels of g, computed as

$$
\left.\mathrm{p}[\text { sel } \mid \mathrm{g}]=1 \text { - p_o (f_neut }(\mathrm{g}) / \mathrm{f} _ \text {all }(\mathrm{g})\right)
$$

with the median (green), first quartile (blue) and min (cyan) estimate of p_o. I would ignore the oscillations on the left of -3 (very small relative oscillations in f _all and f _neut, see graph on left), but notice again how the median estimate would put a non negligible portion of the curve below 0 between -3 and 0 .

NOTE: the f_{-}sell (g) and $\mathrm{p}[\mathrm{sel} \mid \mathrm{g}]$ curves will become smoother as we increase the degree of smoothing producing the f_all and f_neut curves. The degree of smoothing in these calculations was very low. We will also repeat the calculations using a t-distribution instead of a non-parametric smooth for the neutral density.

