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We generalize the computation of the Regulatory Potential (RP) score from two-way alignments of human and
mouse to three-way alignments of human, mouse, and rat. This requires overcoming technical challenges that arise
because the complexity of the models underlying the score increases exponentially with the number of species.
Despite the close evolutionary proximity of rat to mouse, we find that adding the rat sequence increases our ability
to predict genomic sites that regulate gene transcription. A variant of the RP scoring scheme that accounts for local
variation in neutral mutational patterns further improves our predictions.

Several computational methods have been developed for predict-
ing, within a given genomic sequence, the location of signals
that regulate gene expression. A search for clustered consensus-
binding motifs can guide experimental studies when gene regu-
lation is accomplished by cooperative binding of characterized
transcription factors (e.g., Berman et al. 2002; Hannenhalli and
Levy 2002). For uncharacterized regulatory mechanisms that are
conserved among two or more species, conserved noncoding seg-
ments are strong candidates for experimental verification (e.g.,
Hardison et al. 1997a; Loots et al. 2000). On the other hand, se-
quence conservation by itself may not differentiate between
regulatory segments and other functional regions, such as non-
translated RNA genes.

We recently proposed a computational approach for identi-
fying regulatory regions within two-way DNA alignments of hu-
man and mouse (Elnitski et al. 2003), which uses statistical mod-
els based on frequencies of short alignment patterns in regulatory
regions and neutral DNA. The resulting regulatory potential (RP)
score is effective in locating previously identified erythroid regu-
latory elements. It has been used in combination with conserved
transcription-factor binding sites to predict candidate regulatory
regions, which frequently show effects on gene expression when
tested experimentally (Hardison et al. 2003b).

Theoretical analyses indicate that simultaneous comparison
of three sequences, rather than two, increases the statistical
power to distinguish significant matches from regions that
match purely by chance (Altschul and Lipman 1990). More gen-
erally, multispecies comparisons are expected to add informa-
tion, as they frequently reveal phylogenetic footprints that are
not discernable with only two sequences (e.g., Gumucio et al.
1992; Hardison et al. 1997b). However, this provides no assur-
ance that adding a particular species will improve performance of
a particular method that leverages sequence conservation for a
particular goal.

In this spirit, we have extended our RP score to human–
mouse–rat alignments to verify whether the newly available rat
genome sequence can improve prediction accuracy for regulatory
signals in the human genome sequence, notwithstanding the
close physiological and phylogenetic similarity between rat and

mouse. Beyond the specific scope of this analysis, the RP ap-
proach can be applied to discriminate between any two sets of
alignments, and the extension we present here can be adapted to
any multispecies comparison, provided that sequenced genomes
and adequate training data exist.

Extension of the RP score to three sequences presents serious
technical challenges, because the complexity of the models un-
derlying the score can increase exponentially with the number of
species. Thus, we need to use more sophisticated approaches
than in our previous study, to select informative models and
limit complexity.

This study also describes and verifies a separate avenue to
improve the performance of RP scores, which can be used with
comparisons of any number of species. Instead of estimating a
single genome-wide model for alignments in neutrally evolving
regions, we produce local estimates in a sliding window of the
genome. This accounts for local variation in neutral evolutionary
rates (International Mouse Genome Sequencing Consortium
2002; Hardison et al. 2003a).

RESULTS

Basic Strategy
In the original implementation of the RP score, we first reduced
each two-way alignment of human and mouse to a string of
symbols in an appropriate alphabet. For example, we used a col-
lapsed five-symbol alphabet to describe two-way alignment col-
umns as follows: (1) match involving A or T; (2) match involving
G or C; (3) transition; (4) transversion, and (5) column contain-
ing a gap. Then, for a fixed word-size, say k, we used statistical
models to classify each alignment depending on whether the
words (k-mers) in its symbol string are more characteristic of
regulatory regions or of neutral DNA. Parameters of the statistical
models are estimated using training data from alignments of ex-
perimentally confirmed regulatory elements and aligned ances-
tral interspersed repeats. We use the latter as a template for neu-
tral behavior, as most appear to be under no selective pressure
(International Mouse Genome Sequencing Consortium 2002). In
more detail, the RP score is derived from a log-ratio comparison
between transition probabilities of two Markov models, esti-
mated on the two training sets. The order of the Markov models
(i.e., the number of preceding positions upon which the current
position depends) is determined by the word-size, t = k � 1. In
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our implementation, we measured the frequency of hexamers in
the alignments, thus estimating transition probabilities for 5th
order Markov models.

Extension of RP scores to three sequences presents serious
technical challenges because of a combinatorial increase in the
number of possible individual alignment columns and short
alignment patterns when comparing multiple sequences. For
two-way alignments, the number of possible alignment columns
composed by A,C,G,T,�, minus the {�,�} pair, amounts to
52 � 1 = 24. For three-way alignments, the number of possible
alignment columns composed by A,C,G,T,�, minus the
{�,�,�} triplet, amounts to 53 � 1 = 124. When turning to
short alignment patterns, these numbers are further raised to a
power linked to the pattern’s length (see below). Moreover, the
available regulatory training data decreased by ∼25% with respect
to our previous study, at least in part because the rat genome
sequence is currently incomplete.

Thus, here we use more sophisticated approaches to collaps-
ing the alphabet (state space) and selecting the order of the
Markov models. This fine-tuning is necessary to make efficient
use of the available data, and avoid overfitting and deterioration
in estimate accuracy associated with large alphabets and high
orders.

Training Sets
Our analyses use training data for known regulatory elements
and ancestral repeats (i.e., repeats predating the split between
human and rodent lineages). We extract three-way alignments
corresponding to trimmed regulatory elements (REG) available at
http://bio.cse.psu.edu/mousegroup/Reg_annotations. These
alignments comprise a total of 26,721 alignment columns, and
are parsed into a collection of 273 contiguous nonoverlapping
segments of length approximately W = 100 bp (median = 100, 1st

quartile = 92, 3rd quartile = 101). In the following, we indicate
this collection as C(W)REG and the number of segments it con-
tains as NREG = 273. The parsing is implemented for score evalu-
ation purposes, and has almost no effect on the training of the
score (see Methods for more details; W = 100 bp is also the win-
dow size we later adopt in computing the score genome-wide).
Next, we consider three-way alignments of ancestral repeats (AR).
We sample at random from these alignments to produce a train-
ing set comparable to that for regulatory elements. The sampled
alignments comprise a total of 27,327 alignment columns, which
are parsed into a collection of 260 nonoverlapping segments of
approximate length W = 100 bp (median = 100.5, 1st quar-
tile = 92.25, 3rd quartile = 116.75). The short-hand notations for
this collection and its size are C(W)AR and NAR = 260.

Collapsed Alphabet, Order Selection, and Calculation
of the Three-Way RP Score
The regulatory potential score of a generic three-way alignment
segment of fixed length is given by

RP = �
a

log�pREG�sa | sa−1,…sa−t �

pAR�sa | sa−1,…sa−t � � (1)

where a ranges over the positions in the segment, the s’s indicate
symbols in a state space, that is, an alphabet of three-way align-
ment columns, and the pREG’s and pAR’s transition probabilities
for two Markov models of order t estimated on C(W)REG and
C(W)AR, respectively. Considering the full state space of 124
three-way alignment columns:

S = {ordered triplets composed of A, C, G, T, � minus
{�,�,�}}

would entail estimation of 124t � (124 � 1) plus 124t �

(124 � 1) free parameters (each row of a transition probability
matrix is subject to the constraint of adding up to 1). Therefore,
to make efficient use of the limited REG (and matching AR) train-
ing data currently available, we need to fine-tune the complexity
of our models through appropriate state space collapsing and
order selection. We want to allow for enough complexity as to
capture systematic signals with discriminatory content, while
avoiding overfitting and deterioration in estimate accuracy asso-
ciated with large model sizes. Our computation involves several
modules, as described below.

State collapsing is implemented through a hierarchical ag-
glomeration algorithm on the basis of a figure of merit expressing
separation between the RP scores of segments in C(W)REG and
C(W)AR. The algorithm considers a range of possible orders
through a mixing mechanism, so as not to skew state collapsing
toward specific orders (see Methods). If applied directly to the
124 states in S, this algorithm would proceed essentially at ran-
dom through early iterations. As long as the number of states is
very large, overfitting would make most of the possible agglom-
erations equivalent in terms of the figure of merit, as they will all
allow nearly perfect separation between REG and AR scores. This
may, in turn, lock the procedure as a whole into markedly sub-
optimal solutions. To overcome this problem, we perform a pre-
collapse that groups together symbols that are very rare in our
training collections, and symbols whose frequency profiles across
the NREG + NAR segments in C(W)REG and C(W)AR are very similar
(see Methods)—note that the precollapse does not target dis-
crimination between REG and AR, and does not make use of a
Markov structure, it simply aggregates at the outset symbols with
highly correlated individual occurrence behavior. The resulting
alphabet S0 is then further collapsed on the basis of discrimina-
tion, producing a sequence of nested alphabets of progressively
smaller size, eventually reducing to an alphabet of one symbol.
As the agglomeration proceeds, we follow the relative loss in the
figure of merit (see Methods). This relative loss remains fairly
constant for nested alphabets of size >10, acquires an increasing
trend for nested alphabets ranging in size between 10 and 5, and
finally spikes when agglomerating from 5 to 4 symbols. Thus,
among the smallest alphabets produced by the agglomeration,
those of sizes 10 to 5 are natural candidates for more careful
investigation.

Next, we use cross-validation to choose among these candi-
date alphabets, and select an order as to parsimoniously fit the
data once translated into them. For each candidate alphabet, and
each order t ranging from 0 (independent positions) to T = 5
(which would capture hexamer structures associated with bind-
ing sites), we compute cross-validation misclassification rates.
The final choices of collapsed alphabet S* and order t* are deter-
mined on the basis of these rates (see Table 1 and Methods). The
largest of the candidate alphabets (10 symbols) and order t* = 2
provide the best results. The cross-validation scheme we use is a
leave-one-out, in which segments in the training sets are with-
held from training and then classified one at a time (see Meth-
ods).

Table 2 summarizes S*. Symbols #1 and #3 both aggregate a
very large number of triplets (51 and 35, respectively). Symbol #1
is almost entirely composed by highly diverged triplets (three
mismatching species, two mismatching species and one gap, one
species and two gaps). In fact, it contains all “very seldom” trip-
lets identified in the precollapse stage. Roughly half of the trip-
lets in Symbol #3 are again highly diverged, although slightly
more frequent in our training data—they were not labeled as rare
in the precollapse. The other half of the triplets in Symbol #3 are
ones that contradict phylogenetic distance, with human match-
ing one of the rodents, and the second rodent mismatching or
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gapped. Interestingly, 14 of 32 of these triplets, as well as 9 of 12
triplets with one species and two gaps, escape the two populous
symbols. They can be found in the remaining, smaller groups,
along with 12 of 14 triplets with the two rodents matching and
human mismatching or gapped (two of these, GTT and TCC, are
actually in Symbol #1), and the four triplets of perfect matches.
Also, if we consider transversions and transitions among triplets
with human matching one of the rodents, and the second rodent
mismatching, we see that none of the transversions escapes the
two populous symbols, whereas six of eight transitions do, and
can be found mostly in Symbols #4 and #5. If we consider trans-
versions and transitions among triplets with rodents matching,
and the human mismatching, we see that transversions can be
found mostly in Symbols #9 and #10, and transitions again
mostly in Symbols #4 and #5. In summary, although with excep-
tions, Symbols #9 and #10 concentrate transversions between
human and rodents, whereas Symbols #4 and #5 concentrate
both transitions between human and rodents and transitions in
one of the two rodents, where the other keeps matching human.
Finally, the four triplets of perfect matches all occupy a symbol of
their own (#2, #6, #7, and #8, which actually sees -CC lumped
with TTT), indicating that when reading perfectly conserved
strings of the three-way alignments, spelling bases does matter
for the purpose of discriminating between regulatory and neutral
locations.

Another important point is whether our collapsed S* is ca-

pable of conveying discriminatory information that comes from
having the rat sequence in addition to mouse. Corresponding to
each of the 24 possible human–mouse pairs, there are five (four
in the case of the {�,�} pair) human–mouse–rat triplets. Using
Table 2, we can observe where these triplets fall in terms of sym-
bols in S*. For instance, triplets corresponding to the CC pair fall
in four different symbols; CCT in symbol 1, CCA and CCG in
symbol 2, CC- in symbol 4, and the three-way match CCC in
symbol 6. In general, triplets corresponding to the same human–
mouse pair do not tend to cluster together in the collapsed al-
phabet; most are spread across three clusters, some across two,
and some across four. Thus, S* can convey information carried by
the rat sequence.

Ability of Three-Way and Two-Way RP Scores
to Distinguish Alignments in Regulatory Regions
From Alignments of Neutral DNA
The red curves in Figure 1 represent cumulative distribution
functions for the scores of three-way alignment segments in
C(W)REG and C(W)AR, obtained through equation 1 using esti-
mated transition probabilities (see Methods) for the final models.
Also in the figure are misclassification rates from cross-validation
(false positives 15%, false negatives ∼19.41%). On the basis of
these results, the RP score from three-way alignments of human,
mouse, and rat provides good discrimination between regulatory

Table 1. Rates From Leave-One-Out Cross-Validation for Selected Nested Alphabets and Orders

Alphabets
and orders

REG alignment segments AR alignment segments

Correct (TP) Unclassified Wrong (FN) Correct (TN) Unclassified Wrong (FP)

10 symbols
order 1 0.758242 0.000000 0.241758 0.865385 0.000000 0.134615
order 2 0.805861 0.000000 0.194139 0.850000 0.000000 0.150000
order 3 0.637363 0.000000 0.362637 0.907692 0.000000 0.092308
order 4 0.065934 0.919414 0.014652 0.042308 0.957692 0.000000

9 symbols
order 1 0.743590 0.000000 0.256410 0.873077 0.000000 0.126923
order 2 0.761905 0.000000 0.238095 0.876923 0.000000 0.123077
order 3 0.703297 0.000000 0.296703 0.773077 0.000000 0.226923
order 4 0.069597 0.919414 0.010989 0.088462 0.911538 0.000000

8 symbols
order 1 0.761905 0.000000 0.238095 0.846154 0.000000 0.153846
order 2 0.809524 0.000000 0.190476 0.800000 0.000000 0.200000
order 3 0.706960 0.000000 0.293040 0.773077 0.000000 0.226923
order 4 0.161172 0.835165 0.003663 0.046154 0.953846 0.000000

7 symbols
order 1 0.750916 0.000000 0.249084 0.846154 0.000000 0.153846
order 2 0.791209 0.000000 0.208791 0.834615 0.000000 0.165385
order 3 0.758242 0.000000 0.241758 0.800000 0.000000 0.200000
order 4 0.293040 0.695971 0.010989 0.123077 0.869231 0.007692

6 symbols
order 1 0.747253 0.000000 0.252747 0.846154 0.000000 0.153846
order 2 0.743590 0.000000 0.256410 0.853846 0.000000 0.146154
order 3 0.783883 0.000000 0.216117 0.765385 0.000000 0.234615
order 4 0.498168 0.421245 0.080586 0.384615 0.546154 0.069231

5 symbols
order 1 0.732601 0.000000 0.267399 0.873077 0.000000 0.126923
order 2 0.725275 0.000000 0.274725 0.861538 0.000000 0.138462
order 3 0.681319 0.000000 0.318681 0.838462 0.000000 0.000000
order 4 0.633700 0.000000 0.366300 0.792308 0.000000 0.207692
order 5 0.340659 0.351648 0.307692 0.584615 0.361538 0.053846

Thinking of REG as the category to be recognized, the Correct and Wrong columns are also labeled as TP (true positive) FN (false negative) for REG,
and TN (true negative) and FP (false positive) for AR. When an order is reached that gives high rates of unclassified elements–over-fitting–larger
orders, for which such rates become even higher, are not listed. The 10-symbol alphabet and order 2 (in bold) are the ones used for the 3-way RP
and 3-way LRP scores.
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and neutral DNA, especially considering the limited amount of
data on which the score is trained.

To verify the effectiveness of extending our scoring scheme
to multiple alignments, and assess the informational contribu-
tion of the rat sequence, we compare the performance of the
three-way RP score with that of the RP score computed on the
basis of two-way human-mouse alignments only (Elnitski et al.
2003). For comparability, we use here only human–mouse align-
ments extracted from the three-way alignments of regulatory re-
gions and ancestral repeats used for the three-way score. As a
consequence, we are using only 26,721 two-way alignment col-
umns from regulatory elements, whereas 35,206 were used in our
previous study. On these data, the 24 original states in

S = {ordered pairs composed of A, C, G, T, � minus {�,�}}

are collapsed in the 5-symbol alphabet from Elnitski et al. 2003
(matches of A’s and T’s, matches of G’s and C’s, transitions, trans-
versions, and pairs containing one gap). The order t* = 3 (smaller
than the one used previously) is again selected on the basis of
cross-validation, and as to give a modeling complexity compa-
rable to that underlying the three-way score.

The blue curves in Figure 1 are the cumulative distribution
functions for the resulting two-way RP scores of human–mouse
alignment segments extracted from the C(W)REG and C(W)AR col-
lections, with the accompanying misclassification rates (false
positive ∼16.54%, false negatives ∼21.98%). Comparing these
curves and rates to those relative to the three-way score, we see a
clear increase in separation, as well as a small improvement in
cross-validation outcomes. Thus, a modest, but robust improve-
ment can be attributed to information carried by the rat.

Adjusting for Variation
in Local Evolutionary Rates:
The Localized RP Score
Motivated by the abundant evidence
of local variation in neutral evolu-
tionary patterns (International
Mouse Genome Sequencing Consor-
tium 2002; Hardison et al. 2003a), we
also implement an alternative ver-
sion of the three-way score, in which
AR transition probabilities are esti-
mated locally. This is possible in
terms of data availability because,
unlike alignments from known regu-
latory regions, alignments of ances-
tral repeats needed for this estima-
tion are abundant.

First, we partition the genome-
wide three-way alignments into
nonoverlapping windows u, each
containing 10,000 AR alignment
columns. These windows have dif-
ferent lengths, depending on the
local AR density (in terms of human
sequence, median = 440,200 bp, 1st

quartile = 307,500 bp, 3rd quar-
tile = 622,700 bp).

Next, for each window u, we
consider the AR content of the win-
dow itself, the one preceding it, and
the one following it, for a total of
30,000 alignment columns, which
form a local collection C(W)AR,u (see
Methods). This way, each local col-

lection matches approximately in size our previous C(W)AR and
C(W)REG. Considering the same 10-symbol alphabet S* and order
t* = 2, we then calculate local estimates of the transition prob-
abilities (pAR,u’s) using the data in each C(W)AR,u. The localized RP
score of a generic three-way alignment segment of fixed length is
thus given by

LRP = �
a

log� pREG�sa | sa−1,…sa−t* �

pAR,u�a��sa | sa−1,…sa−t* �� (2)

where u(a) indicates the window in which position a falls, and
again a ranges over the positions in the segment.

Local estimation of the denominator terms in this log-odds
equation allows us to incorporate varying composition and short
pattern features of neutral DNA, as observed in ancestral repeats.
Localization results in an increased score for 106 of the
NREG = 273 segments in C(W)REG, circa 39% of the REG training
set. Also, the relative increase (LRP-RP)/RP exceeds 0.10 (i.e.,
10%) for 97 segments, circa 36% of the REG training set. This
demonstrates how reference to a localized neutral background
can sharpen our discriminatory signals. However, for many of
the regulatory elements in our training set, the LRP score is ap-
proximately the same, or lower, than the RP score. A preliminary
screening suggests that in regions of low-repeat density, the win-
dows defining the local collection C(W)AR,u extend very broadly
(in terms of human sequence, the largest window reaches
48,610,000 bp), which, in turn, may result in an increased re-
semblance between short alignment patterns in C(W)AR,u and the
randomly sampled collection C(W)AR. For these regions, differ-
ences between local and overall neutral background are minor. A
second interesting possibility, which warrants a more detailed

Table 2. Summary of the Final Collapsed Alphabet S* (10 Symbols)

In the triplets, first, second, and third positions correspond, respectively, to human, mouse, and rat.
(Underlined) one species and two gaps. (Black) very rare triplets; two mismatching species and one gap,
or three mismatching species. (Green) more triplets with two mismatching species and one gap, or three
mismatching species. (Brown) triplets with human matching one of the rodents, and the second rodent
mismatching or gapped. (Blue) triplets with rodents matching, and human mismatching or gapped.
(Red) matches of all three species. (tv and ts) Near triplets in Symbols #4, #5, #9, and #10 indicate
transversions and transitions, respectively.
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future investigation, is that ancestral repeats in some regions may
have a tendency to resemble functional sequences.

Examples of RP Scores in Regions Containing Known
Regulatory Elements
Equations 1 and 2 can also be used to construct genome-wide
regulatory potential tracks. Using the human sequence as refer-
ence, we move along the genome-wide three-way alignment of
human, mouse, and rat with a sliding window of size W = 100
bp, and calculate our scores at a given spacing frequency (every
r = 5th position). More precisely, counting positions from the
start of the alignment, we consider each window centered at a
position that is an even multiple of r, score the window according
to our equations, and associate the resulting score values to the
center position. Here, we provide two instances of these calcula-
tions. The three-way RP, the two-way RP as recomputed for the
current analysis, and the three-way LRP are plotted along two
∼10-kb human regions, one surrounding the cardiac �-actin
(ACTC) locus on chromosome 15 (Fig. 2A), and the other sur-
rounding the CCAAT enhancer-binding protein � (C/EBP�) locus
on chromosome 19 (Fig. 2B). Both of these loci are part of our
regulatory training data.

Cardiac �-actin, or acidic actin, is a highly conserved protein
in mammals (Biesiada et al. 1999). It is involved in the develop-
ment of skeletal and cardiac muscles, serving as a major struc-
tural constituent in thin filaments. Tissue-specific expression of
ACTC gene requires simultaneous interaction of MyoD1, serum
response factor (SRF or a related protein), and Sp1 (Sartorelli et al.
1990), whose binding sites are found within a 100-bp region
upstream of the transcription start site. The RP scores for this
promoter are higher than for any other DNA segments in the
locus, including the exons (Fig. 2A). The three-way RP is higher
than the two-way RP in the promoter, and the three-way LRP is
even higher. This provides an example of the improved discrimi-
natory power provided by three-way alignments and local adjust-
ment. The promoter is also a strong peak for the human–mouse
conservation track, but the latter does not distinguish the pro-
moter from the exons.

C/EBP� is an intronless gene whose expression is regulated
during liver development, adipocyte differentiation, and liver re-
generation. It also plays a role in maintaining highly differentiated
hapatocytes and adipocytes. Despite similarities in the promoters of
humans and mice, the human gene is autoregulated by interaction

of C/EBP� with a bound USF protein (Timechenko et al. 1995). In
mice, autoregulation occurs when C/EBP� binds directly to the pro-
moter region. This locus shows several peaks of high RP score, two
of which overlap with the promoter (Fig. 2B). The three-way RP is
higher than the two-way RP, and again sharpens discrimination
between the promoter and other segments. However, the effect of
adjusting the three-way RP scores for variation in local evolutionary
rates is minor. As a possible explanation, the localization window
containing C/EBP�, is 452,182 bp in length, whereas that contain-
ing cardiac �-actin is 335,969, indicating that the surroundings of
C/EBP� are poorer in ARs. The annotation of other coding exons in
this region is not extensive, and some of the peaks in RP scores
could be from unannotated exons.

Tracks for two-way and three-way RP scores are available at
UCSC Human Genome Browser, and more information and re-
sources on RP scores can be gathered at the site of the Center for
Comparative Genomics and Bioinformatics (http://www.bx.psu.
edu).

DISCUSSION
Many groups have tackled the job of identifying and annotating
protein-coding regions in sequenced mammalian genomes.
Fewer efforts (e.g., Dieterich et al. 2003) have begun to annotate
confirmed or predicted functional noncoding elements genome-
wide, and much work remains to be done in this area. RP scores
provide one means to annotate entire mammalian genome se-
quences with predictive information about sites that may regu-
late gene transcription. In this study, we also provide evidence
supporting the hypothesis that the addition of the rat sequence
to those of human and mouse allows for better discrimination of
regulatory sites.

Some existing computational approaches for predicting the
location of regulatory sites use criteria based purely on interspe-
cies sequence conservation. For example, Loots et al. (2000)
searched for regions of at least 100 bp, having at least 70% iden-
tity between human and mouse. When homologous sequences
from more than two species are available, blocks of strongly con-
served sequences, or phylogenetic footprints, can effectively pre-
dict binding sites for transcription factors (Gumucio et al. 1992;
Hardison et al. 1997b). Numerous plausible ways have been ex-
plored to characterize well conserved regions within multiple
alignments (e.g., Schneider et al. 1986; Stojanovic et al. 1999).

Another approach is to look for the occurrence of short motifs
of nucleotides that are characteristic of the binding sites for known
transcription factors (e.g., Hughes et al. 2000). Experiments have
suggested that a combination of conservation and motifs is superior
to either approach in isolation (Levy and Hannenhalli 2002), and
web resources exist to help users apply both approaches (Jegga et al.
2002; Loots et al. 2002; Sharan et al. 2003).

The Markov modeling underlying our RP scores places both
interspecies conservation and occurrence of nucleotide motifs
under one umbrella. Extreme cases of the model correspond to
pure conservation (e.g., where a symbol depends only on the
number of matching pairs of nucleotides in a column of the
alignment) at one end of the spectrum, or pure nucleotide con-
tent (e.g., the alphabet that simply records the nucleotide in the
first species) at the other. Our procedure for model selection (col-
lapsing of the original alignment column alphabet, choice of
order) uses the available training data to determine how to mix
criteria to maximize discriminatory power.

Our approach makes no a priori assumptions about the
physical mechanisms behind gene regulation. Although many
examples of cis-regulatory modules are known that function by
proteins binding to genomic segments of around 6 bp in length,
this is not taken as an assumption in our modeling. The approach

Figure 1 Cumulative distributions for two-way (blue) and three-way
(red) RP scores on C(W)REG and C(W)AR. The text box contains the corre-
sponding misclassification rates from leave-one-out cross-validation.
Scores are all length normalized to correct for the slightly different sizes
of the training segments (all around W = 100 bp).
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is not inherently tied to prediction of regulatory sites; we train a
score to distinguish between two sets of genomic segments. Con-
sequently, the same computational strategy can be adapted for
prediction of any class of genomic DNA for which adequate
training data are available. For example, one could compute a
score to distinguish between CpG islands that are methylated in
the germ line and those that are not.

Our comparison of two-way and three-way RP scores demon-
strates that computational tools for prediction of gene regulatory
sequences can be effectively generalized to take advantage of mul-
tiple species alignments. Interestingly, the rat sequence, when
added to human and mouse, does contribute to the discriminatory
power of the RP score, notwithstanding its proximity to one of the
sequences already in use. This suggests that other mammalian ge-
nome sequences at a larger phylogenetic distance will allow for yet
larger gains in the resolution of functional from nonfunctional se-

quences. The examination of many vertebrate genome sequences
demonstrates that more sequences can improve the identification
of sequences likely under selection (Thomas et al. 2003).

The exploration of computational methods to predict func-
tional noncoding regions, or even just signals that regulate gene
transcription, is still in its infancy. Statistical methods that com-
bine sequence conservation with a search for DNA motifs seem
very promising, and we anticipate the development of multiple
worthwhile approaches in the bioinformatics community.

METHODS

Training Data Preparation
We use whole-genome three-way human, mouse, and rat align-
ments as described in Blanchette et al. (2004). These were created
from human genome release hg15 (build 33, 2003-04-10), mouse

Figure 2 Plots of two-way RP, three-way RP, and three-way LRP scores superimposed to annotations from the UCSC human genome browser along
two selected genomic regions. (A) Approximately 10 kb around the cardiac � actin locus on human chromosome 15. (B) Approximately 10 kb around
the C/EBP� locus on human chromosome 19. Scores are all length normalized to the fixed size W = 100 bp of the sliding windows on which they are
calculated.
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genome mm3 (2003-07-17), and rat genome rn3.1 (2003-06-08)
using the new RepeatMasking (version 2003-06-23). They are
available in the downloads section of the genome.ucsc.edu site.

The three-way alignments corresponding to the trimmed
known regulatory elements available at http://bio.cse.psu.edu/
mousegroup/Reg_annotations are parsed into NREG = 273 con-
tiguous nonoverlapping segments of approximate length
W = 100 bp (median 100, q1 = 92, q3 = 101), forming a collec-
tion C(W)REG, which comprises a total of 26,721 bp. In detail,
alignments with length �75 and <150 are retained as they are,
those with length �150 and �250 are split in half, and contigu-
ous segments of 100 bp are progressively cut from alignments
with length >250, until the reminder has length �250. For the
purpose of training the score, which requires counting occur-
rences of short strings of symbols in these alignments, the pars-
ing is immaterial—it only causes us to lose a small number of
strings at the boundaries of the segments.

An analogous collection C(W)AR is formed randomly sam-
pling three-way alignments of ancestral repeats. These are lo-
cated via the four-way alignments with repeat consensus se-
quences. Alignments are again parsed as to produce NAR = 260
nonoverlapping segments of approximate length W = 100 bp
(median 100.5, q1 = 92.25, q3 = 116.75), for a total of 27,327 bp.
The local collections C(W)AR,u are formed in the same fashion,
except that ancestral repeats are not randomly sampled, but
gathered through a partition of the genome-wide three-way
alignment, as described in the Results. For first and last window
in the partition for each human chromosome, the local collec-
tions are formed using first, second, and third window, and sec-
ond to last, next to last, and last window, respectively—thus, the
local collections for first and second window coincide, as do
those for next to last and last window.

State Space Precollapse
Using the segments in C(W)REG and C(W)AR, we compute frequency
vectors for the 124 symbols in the initial state space S—a frequency
vector is a (NREG + NAR)-vector containing frequencies of a symbol
in each segment in the training collections. For each symbol, we
compute the average frequency across all segments in C(W)REG, and
across all segments in C(W)AR. Symbols for which the maximum
between these is <0.001 are lumped together (they occur on average
less than once in every 1000 bp of REG training data, and of AR
training data). Hierarchical clustering (with Euclidean distance and
Complete linkage, see for instance Hartigan 1975) of frequency vec-
tors is then used to agglomerate the remaining symbols. This does
not pursue discrimination between REGs and ARs; it allows us to
identify, if they exist, groups of symbols whose frequency profiles
across training segments (of whichever type) are very similar. We
interrupt agglomeration at 95% similarity level. This precollapse
leads to a space S0 containing one symbol for seldom triplets, and
one symbol for each cluster of triplets.

State Space Agglomeration
S0 is further collapsed by hierarchical agglomeration, this time ac-
cording to a figure of merit (see below) that targets discrimination
between REGs and ARs. Let S(j) = {s(j,i), i = 1,…I(j)} and M(j) be, re-
spectively, the state space and the corresponding figure of merit at
agglomeration stage j. Also, let S(j; i = h) be the space obtained merg-
ing s(j,i) and s(j,h), and M(j; i = h) the corresponding figure of merit.
To pass to agglomeration stage j + 1, select i* and h* such that

M�j;i* = h*� = maxi�j��1…I�j�� M�j;i = j�

and merge these two states, setting S(j + 1) = S(j; i* = h*). Corre-
spondingly M(j + 1) = M(j; i* = h*). We record the series M(j),
j = 0,1,2…, and compute the relative loss in merit at agglomera-
tion stage j = 1,2,… as

R�j� =
M�j − 1� − M�j�

M�j − 1�

Following this quantity along agglomeration stages allows us to
identify a small number of nested candidate alphabets to be in-

vestigated, together with appropriate orders, through cross-
validation (see below).

Figure of Merit
At each agglomeration stage j, the figure of merit is built consid-
ering a range of orders t = 0 (iid case) to t = T(j). We use the
alignment columns in C(W)REG and C(W)AR to produce indi-
vidual symbol and string (overall) frequencies

fREG�s�, fAR�s� for all s in S�j�
fREG�s1,s2�, fAR�s1,s2� for all �s1,s2� in S�j�2

fREG�s1,s2…sT�j�+1�, fAR�s1,s2…sT�j�+1� for all �s1,s2…sT �j�+1� in S�j�T �j�+1

Next, we estimate transition probability matrices for REG, one for
each order. For any given t, we compute the frequency ratios

pREG�s | s−1 … s−t� = �
fREG�s,s−1…s−t�

fREG�s,s−1…s−t�
fREG�s,s−1…s−t+1�

fREG�s−1…s−t+1�

fREG�s,s−1…s−t�, fREG�s−1…s−t� � 0

fREG�s−1…s−t� = 0 (3)

If for at least one (but not all) s we have fREG(s, s�1… s�t) = 0, we
use Laplace’s rule (Durbin et al. 1998), that is, increment each
count by 1. These quantities form a I(j)t by I(j) matrix, which is
augmented replicating each row I(j)(T(j)-t) times, to produce a
I(j)T(j) by I(j) matrix PREG(t,j). The matrices PREG(t,j), t = 0… T(j) are
then combined using weights:

P̃REG�j� = �
t=0

T�j�

��t,j�PREG�t,j�

(we use uniform weights). After proceeding similarly for AR, we
use the two combined matrices to score all elements in C(W)REG
and C(W)AR using the function

�
a

log�p̃REG�sa | sa−1…sa−T�j��

p̃AR�sa | sa−1…sa−T�j��
�

where a ranges along the positions in a segment. A figure of merit
could then be defined through simple or cross-validation mis-
classification rates associated with this score function. However,
notwithstanding the precollapse, in the initial agglomeration
stages overfitting may cause little if any overlap between the REG
and AR distributions, and a cross-validation scheme, repeating
the above calculations iteratively withholding training data,
would constitute a computationally intensive iteration within
the agglomeration iteration itself. As an alternative, we consider
qAR = (100 � q)% quantile of the score distribution for segments
in C(W)AR and qREG = q% quantile of the score distribution for
segments in C(W)REG, and define the figure of merit as

M�j� = qREG − qAR

(we use q = 10). This is negative when the overlap between the
two distributions goes past the chosen quantile value, and be-
comes positive and increases as the two distributions separate.

The maximal order T(j) used at each agglomeration stage
changes depending on the number of states I(j). This induces a
marked nonmonotonicity in M(j). To maintain the procedure
computationally feasible, we restrict ourselves to T(j) = 2 for I(j)
larger than 15, T(j) = 3 for I(j) between 15 and 11, T(j) = 4 for I(j)
between 10 and 6, and T(j) = 5 for I(j) equal to or smaller than 5.
Note T = 5 would capture hexamer structures associated with
binding sites, and is the order used previously in Elnitski et al.
(2003).

Cross-Validation
Although we do not use cross-validation to define the figure of
merit, we do sustain the computational burden of a leave-one-
out cross-validation scheme to choose among a set of nested
candidate alphabets suggested by the agglomeration and select
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orders. For each candidate alphabet, and orders t ranging from 0
to T = 5, we proceed as follows:

1. Withhold an individual training segment, either from
C(W)REG or from C(W)AR.

2. Estimate the REG and AR transition probabilities on the re-
maining data.

3. Score the segments used in training using equation 1; if the
two distributions overlap, define one threshold as the value H
that minimizes (%REG scores<H) + (%AR scores>H); if the two
distributions do not overlap, define two thresholds as
HAR = max of AR scores and HREG = min of REG scores.

4. Score the withheld segment using equation 1. Assume it is a
REG; count it as correctly classified if its score is on the right
of H (HREG), as incorrectly classified if its score is on the left of
H (HAR), and as unclassifiable in case the two distributions
do not overlap and its score is between HAR and HREG—
conversely, if the segment is an AR.

Repeating 1–4, above for each segment in the training col-
lections produces counts of correctly classified, incorrectly clas-
sified, and unclassifiable REGs (ARs), which can then be turned
into rates dividing by NREG (NAR).

The final S* and t* are selected on the basis of these rates. In
particular, we seek to maximize %true positives + %true negatives
(i.e., %correctly classified REGs + %correctly classified ARs), because
low %false negatives + %false positives (i.e., %incorrectly classified
REGs + %incorrectly classified ARs) may occur in coincidence with
high percentages of unclassifiable REGs and/or ARs in case of over-
fitting. Table 1 contains rates for selected candidate alphabets and
order combinations, and Table 2 summarizes our final alphabet S*.

Estimation
The transition probabilities’ estimates

pREG�s | s−1,…s−t*� , �s,s−1,…s−t* ∈ S*

pAR�s | s−1,…s−t*� , �s,s−1,…s−t* ∈ S*

pAR,u�s | s−1,…s−t*� , �s,s−1,…s−t* ∈ S*

to be used in equations 1 and 2 to compute RP and LRP scores, are
simply obtained as ratios of string frequencies from C(W)REG,
C(W)AR, and C(W)AR,u. With proper changes of subscripts, the
formulae are the same as in equation array 3, above.

ACKNOWLEDGMENTS
This work was supported by NIH grant HG-02238 from the Na-
tional Genome Research Institute, with additional support to L.E.
from HG02325.

The publication costs of this article were defrayed in part by
payment of page charges. This article must therefore be hereby
marked “advertisement” in accordance with 18 USC section 1734
solely to indicate this fact.

REFERENCES
Altschul, S.F. and Lipman, D.J. 1990. Protein database searches for

multiple alignments. Proc. Natl. Acad. Sci. 87: 5509–5513.
Berman, B.P., Nibu, Y., Pfeiffer, B.D., Tomancak, P., Celniker, S.E.,

Levine, M., Rubin, G.M., and Eisen, M.B. 2002. Exploiting
transcription factor binding site clustering to identify cis-regulatory
modules involved in pattern formation in the Drosophila genome.
Proc. Natl. Acad. Sci. 99: 757–762.

Biesiada, E., Hamamori, Y., Kedes, L., and Sartorelli, V. 1999. Myogenic
basic helix-loop-helix proteins and Sp1 interact as components of a
multiprotein transcriptional complex required for activity of the
human cardiac �-actin promoter. Mol. Cell Biol. 19: 2577–2584.

Blanchette, M., Kent, W.J., Riemer, C., Elnitski L., Smit, A.F.A., Roskin,
K.M., Baertsch, R., Rosenbloom, K., Clawson, H., Green, E.D., et al.
2004. Aligning multiple genomic sequences with the threaded
blockset aligner. Genome Res. (this issue).

Dieterich, C., Wang, H., Rateitschak, K., Luz, H., and Vingron, M. 2003.
CORG: A database for COmparative Regulatory Genomics. Nucleic
Acids Res. 31: 55–57.

Durbin, R., Eddy, S., Krogh, A., and Mitchison, G. 1998. Biological

sequence analysis. Cambridge University Press, Cambridge, UK.
Elnitski, L., Hardison, R.C., Li, J., Yang, S., Kolbe, D., Eswara, P., O’Connor,

M.J., Schwartz, S., Miller W., and Chiaromonte, F. 2003. Distinguishing
regulatory DNA from neutral sites. Genome Res., 13: 64–72.

Gumucio, D.L., Heilstedt-Williamson, H., Gray, T.A., Tarle, S.A., Shelton,
D.A., Tagle, D., Slightom, J., Goodman, M., and Collins, F.S. 1992.
Phylogenetic footprinting reveals a nuclear protein which binds to
silencer sequences in the human � and 	 globin genes. Mol. Cell.
Biol. 12: 4919–4929.

Hannenhalli, S. and Levy, S. 2002. Predicting transcription factor
synergism. Nucleic Acids Res. 30: 4278–4284.

Hardison, R.C., Oeltjen, J., and Miller, W. 1997a. Long human–mouse
sequence alignments reveal novel regulatory elements: A reason to
sequence the mouse genome. Genome Res. 7: 959–966.

Hardison, R.C., Slightom, J.L., Gumucio, D.L., Goodman, G., Stojanovic,
N., and Miller, W. 1997b. Locus control regions of mammalian

-globin gene clusters: Combining phylogenetic analyses and
experimental results to gain functional insights. Gene 205: 73–94.

Hardison, R.C., Roskin, K.M., Yang, S., Diekhans, M., Kent, J.W., Weber, R.,
Elnitski, L., Li, J., O’Connor, M., Kolbe, D., et al. 2003a. Covariation in
frequencies of substitution, deletion, transposition and recombination
during eutherian evolution. Genome Res. 13: 13–26.

Hardison, R.C., Chiaromonte, F., Kolbe, D., Wang, H., Petrykowska, H.,
Elnitski, L., Yang, S., Giardine, B., Zhang, Y., Riemer, C., et al.
2003b. Global prediction and tests for erythroid regulatory regions.
Cold Spring Harbor Symposia in Quantitative Biology: The genome of
homosapiens. 68: Cold Spring Habor Laboratory Press, Cold Spring
Harbor, NY (in press).

Hartigan, J.A. 1975. Clustering algorithms. John Wiley and Sons, NY.
Hughes, J.D., Estep, P.W., Tavazoie, S., and Church, G.M. 2000.

Computational identification of cis-regulatory elements associated
with groups of functionally related genes in Saccharomyces cerevisiae.
J. Mol. Biol. 296: 1205–1214.

International Mouse Genome Sequencing Consortium. 2002. Initial
sequencing and comparative analysis of the mouse genome. Nature
420: 520–562.

Jegga, A.G., Sherwood, S.P., Carman, J.W., Pinski, A.T., Phillips, J.L.,
Pestian, J.P., and Aronow, B.J. 2002. Detection and visualization of
compositionally similar cis-regulatory element clusters in orthologous
and coordinately controlled genes. Genome Res. 12: 1408–1417.

Levy, S. and Hannenhalli, S. 2002. Identification of transcription factor
binding sites in the human genome. Mamm. Genome 13: 510–514.

Loots, G.G., Locksley, R.M., Blankespoor, C.M., Wang, Z.E., Miller, W.,
Rubin, E.M., and Frazer, K.A. 2000. Identification of a coordinate
regulator of interleukins 4, 13, and 5 by cross-species sequence
comparisons. Science 288: 136–140.

Loots, G.G., Ovcharenko, I., Pachter, L., Dubchak, I., and Rubin, E.M.
2002. rVista for comparative sequence-based discovery of functional
transcription factor binding sites. Genome Res. 12: 832–839.

Sartorelli, V., Webster, K.A., and Kedes, L. 1990. Muscle-specific
expression of the cardiac �-actin gene requires MyoD1 CArG-box
binding factor, and Sp1. Genes & Dev. 4: 1811–1822.

Schneider, T., Stormo G., Gold L., and Ehrenfeucht A. 1986.
Information content of binding sites on nucleotide sequences. J.
Mol. Biol. 188: 415–431.

Sharan, R., Ovcharenko, I., Ben-Hur, A., and Karp, R.M. 2003. CREME: A
framework for identifying cis-regulatory modules in human–mouse
conserved segments. Bioinformatics. Suppl 1: I283–I291.

Stojanovic, N., Florea, L., Riemer, C., Gumucio, D., Slightom, J., Goodman,
M., Miller, W., and Hardison, R.C. 1999. Comparison of five methods
for finding conserved sequences in multiple alignments of gene
regulatory regions. Nucleic Acids Res. 27: 3899–3910.

Thomas, J.W., Touchman, J.W., Blakesley, R.W., Bouffard, G.G.,
Beckstrom-Sternberg, S.M., Margulies, E.H., Blanchette, M., Siepel,
A.C., Thomas, P.J., McDowell, J.C., et al. 2003. Comparative analyses
of multi-species sequences from targeted genomic regions. Nature
424: 788–793.

Timchenko, N., Wilson, D.R., Taylor, L.R., Abdelsayed, S., Wilde, M.,
Sawadogo, M., and Darlington, G.J. 1995. Autoregulation of the
human C/EBP � gene by stimulation of upstream stimulatory factor
binding. Mol. Cell Biol. 3: 1192–1202.

WEB SITE REFERENCES
http://bio.cse.psu.edu/mousegroup/Reg_annotations; Repository of

functional regulatory elements, Penn State University.
http://www.bx.psu.edu; Center for Comparative Genomics and

Bioinformatics, Penn State University.

Received September 14, 2003; accepted in revised form December 28, 2003.

RP Scores From Human–Mouse–Rat Alignments

Genome Research 707
www.genome.org


