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Signi� cance of Interspecies Matches when
Evolutionary Rate Varies
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ABSTRACT

We develop techniques to estimate the statistical signi� cance of gap-free alignments between
two genomic DNA sequences, using human–mouse alignments as an example. The sequences
are assumed to be suf� ciently similar that some but not all of the neutrally evolving regions
(i.e., those under no evolutionary constraint) can be reliably aligned. Our goal is to model the
situation in which the neutral rate of evolution, and hence the extent of the aligning intervals,
varies across the genome. In some cases, this permits the weaker of two matches to be judged
as less likely to have arisen by chance, provided it lies in a genomic interval with a high
level of background divergence. We employ a hidden Markov model to capture variations
in divergence rates and assign probability values to gap-free alignments using techniques of
Dembo and Karlin, which are related to those used for the same purpose by BLAST. Our
methods are illustrated in detail using a 1.49 Mb genomic region. Results obtained from the
analysis of human chromosome 22 using these techniques are also provided.

Key words: DNA sequence alignment, p-values of interspecies matches, evolutionary rate, hidden
Markov model, human chromosome 22.

I. INTRODUCTION

Aligning human and mouse genomic sequences has been proposed as a high-throughput strategy
for analyzing and annotating the human genome. In particular, a genomic interval that is highly

conserved between the two species can be considered as a candidate for encoding a protein (Jang et al.,
1999) or regulating gene transcription (Hardison et al., 1997). The proposal has been adopted whole-
heartedly by the genomics community, resulting in accelerated programs to sequence the mouse genome
by Celera Genomics and, independently, by the public sequencing consortium. Mouse whole-genome
shotgun sequence data in the public domain are just beginning to be used for improving the analysis and
annotation of the public sequence data from the human genome.

There exists no uniquely plausible criterion for determining whether a genomic interval is “highly
conserved.” Of course, part of the dif� culty lies in the fact that any threshold will be at least somewhat
arbitrary. A more vexing problem stems from regional differences in the background level of human–mouse
similarity. Human–mouse evolutionary separation occurred only about 80 million years ago, which is so
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recent that many freely evolving regions (i.e., under no apparent evolutionary constraint) can be reliably
aligned across at least some of their length. However, the fraction of apparently unconstrained DNA that
can be aligned is highly dependent on genomic location (Endrizzi et al., 1999; DeSilva et al., 2001), with
one study (DeSilva et al., 2001) � nding that the percentage of nonrepetitive (e.g., not Alu or L1 sequences)
and noncoding DNA that can be aligned varied from 11% (in the ERCC2 region) to 99% (in the HOXA
cluster).

A number of authors have observed variability of divergence rates. Wolfe et al. (1989) found that
the rate of silent substitutions in protein-coding regions (i.e., nucleotide changes that do not affect the
encoded amino acid sequence) varies widely among genes. These authors and others have concluded that
silent substitutions are neutral, or nearly so, implying that the rate of neutral evolution is highly variable,
depending on position in the genome. Koop (1995) observed that some comparisons of noncoding DNA
between humans and mice show a very high level of conservation in presumably nonfunctional intervals,
other regions show very low conservation, and still others are intermediate. Matassi et al. (1999) show that
silent substitution rates in two genes separated by at most one centiMorgan (roughly one or two megabases)
are more similar to each other on average than are a randomly chosen gene pair, suggesting that genomic
domains of similar neutral evolutionary rate may exist on a megabase scale.

This variability makes it dif� cult to give an objective and appropriate criterion for deciding if a genomic
interval deserves to be classi� ed as “more conserved than can be expected by chance alone.” For instance,
consider the three panels in Fig. 1 from a “percent identity plot,” or PIP. This PIP provides a graphical
summary of a few of the local alignments of 1.49 Mb of DNA sequence from the velocardiofacial syndrome
(VCFS) region of human chromosome 22, for which almost all of the orthologous mouse sequence is
available (Lund et al., 2000). Within those local alignments, three gap-free segments of roughly comparable
lengths and percent identities are highlighted. Based just on these lengths and identities, it is dif� cult to
rank their relative strengths, particularly if one wants to account for the very different degrees of apparent
background divergence among the rows of Fig. 1. The point of this paper is to provide an objective and
statistically rigorous method for ranking the matches according to which of them is less likely to have
arisen by chance.

It is critical that this variation in rate of neutral evolution be better quanti� ed and understood. Genomic
intervals identi� ed as “highly conserved” are candidates for a number of experimental tests for functionality,
including tests to see whether they are expressed as genes or regulate such expression. Such experiments,

FIG. 1. Percent identity plot (PIP) of some human–mouse alignments. Triangles and other icons along the top indicate
positions of interspersed repeats and low-complexity regions found in the human sequence by the RepeatMasker
program. Each tiny horizontal line in the PIP indicates the human positions and percent nucleotide identity of an
interval between consecutive gaps in a local alignment with the mouse genomic sequence.
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particularly those for regulatory function, are expensive and tedious, so it is important that identi� cation
of candidate regions have as rigorous a basis as possible. It is particularly desirable that this be done with
a strong statistical underpinning, e.g., to quantify the extent to which an interval is more conserved than
can be explained by chance.

Our approach to aligning genomic sequences begins by computing a set of local alignments between
sequences of genomic DNA, with the intention of capturing precisely the detectable homologies. For the
VCFS data, we began by identifying interspersed repeats in the human sequence using the RepeatMasker
program (A. Smit and P. Green, unpublished), then removing from the human sequence all interspersed
repeats that we believe to have inserted after the human–mouse split. In addition, all annotated exons
were removed, since our primary interest is in � nding functional noncoding intervals. Removing these two
classes of segments reduced the 1.49 Mb sequence to about 1.06 Mb. Older repeats were “soft masked,”
i.e., not allowed to align in preliminary computations that determine the rough locations of alignments, but
allowed to align during the � nal (gapped alignment) phase. Alignments were computed by the BLASTZ
program (Schwartz et al., 2000) with default parameters.

Our statistical analysis of these alignments is performed in two phases. First, we use a hidden Markov
model (HMM) to detect long-range patterns in the regional variation of divergence level. The basic goal
is to identify a few classes of genomic regions according to the extent that the human sequence can be
reliably aligned with mouse data and to do so in a statistically sound manner that makes a minimal number
of a priori assumptions. The second phase describes the alignments in each of these classes with a Markov
model (as distinct from a hidden Markov model), which is used to determine statistical signi� cance in
a manner appropriate for the level of divergence seen in that type of genomic region. Signi� cance is
expressed as a p-value, giving the probability that a match of equal or higher score could happen by
chance. We now sketch these two phases in turn.

With our approach to aligning genomic sequences, regional variation in divergence level is revealed
most directly by differences in the percentage of nucleotides covered by local alignments, rather than by
the percent of nucleotide identity within alignments. For instance, in one study (Endrizzi et al., 1999),
human–mouse alignments showed a spread of 6.4% to 78.1% in the fraction of nonrepetitive, noncoding
DNA that aligns, but with a spread of only 64.3% to 75.0% in percentage of nucleotide identity within
those local alignments. Indeed, the two regions with the highest percent identity had the lowest fraction
of aligning DNA, indicating that percent identity is a poor discriminator of divergence level. Accordingly,
to embody divergence level, we temporarily set aside information about the internal structure of local
alignments and represent the genomic region by a 1.11 Mb sequence of 0’s and 1’s; it alternates between
runs of 0’s, with a 0 for every unaligned human position, and runs of 1’s, with a 1 for every column of a
local alignment. (Thus, a local alignment generates a number of 1’s that exceeds the length of the aligned
human segment by the total length of inserted mouse nucleotides, i.e., gaps in the human sequence.)

Our approach to training an HMM, as described in the next section, models the sequence of 0’s and
1’s with four “states,” which can be thought of as “modes” hidden in the data. Table 1 summarizes some
of the states’ characteristics. When in one of the states, the sequence consists almost entirely of 0’s (i.e.,
unaligned), in the second it is almost entirely 1’s, and the other two have intermediate frequencies (23.8%
and 72.1%) of 0’s. The last row of Table 1 gives the state’s stationary frequency.

Assigning p-values to gap-free alignments, such as the three intervals highlighted in Fig. 1, requires
modeling the internal structure of alignments. To do this, we replace each 0 in the 1.11 Mb sequence by
U (for unaligned), and replace each 1 by either G (for position in a gap), M (for matched to an identical
symbol) or N (nonmatched). Given a long gap-free alignment, we want to determine the probability that an
equivalent or stronger run of consecutive matched and nonmatched positions could happen by chance in a

Table 1. Characteristics of the HMM’s Four Statesa

State 1 2 3 4

Unaligned 99.1% 23.8% 72.1% 0.14%
Occupied 32.0% 26.8% 35.4% 5.7%

aFirst row: the percentage of unaligned base pairs in each state. Second row: the
stationary frequency of each state.
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Table 2. The p-Values of the Three Segments Indicated in Fig. 1

Segment 1 2 3

Length 161 162 170
Percentage of M 84.5% 92.0% 85.4%
Score (M D 1, N D ¡1) 111 137 121
p-Value 0.0075 0.0013 0.0081

region with a similar degree of alignability. This provides a “p-value” for any strong gap-free alignment,
analogous to those made popular in bioinformatics by BLAST (Altschul et al., 1990). Indeed, the theoretical
underpinnings (Karlin and Dembo, 1992) of our approach to p-values are a generalization to Markov models
of the Karlin–Altschul (1990) method, as originally described for the simpler case of a sequence generated
from independent identical distributions (i.i.d.).

Table 2 presents the p-values, as computed by the methods described here, of the three segments
highlighted in Fig. 1. Compared to the third segment, the � rst segment is somewhat shorter and has a
marginally lower percentage of matched base pairs; hence, its score is lower, e.g., 111 versus 121 if we
score 1 for a match and –1 for a nonmatch. However, because the � rst segment is located in a region with
poorer alignability, it is statistically more signi� cant than the third segment, as indicated by the p-values.

The next two sections cover the details of the two phases of our statistical analysis, i.e., training an
HMM to model the high-level variation in divergence and computing p-values, respectively. Readers of
those sections are assumed to be familiar with basic concepts of probabilistic analysis of DNA sequences,
roughly at the level of the � rst three chapters of the book by Durbin, Eddy, Krogh, and Mitchison (1998).
The most dif� cult details are placed in the appendix. At the end, we discuss generalizations of our results
that remain to be explored and suggests ways that our methods may be used to obtain insight into several
basic questions concerning the mechanisms and tempo of evolutionary processes.

II. MODELING WITH AN HMM

As described in the previous section, we represent a set of local alignments of a “reference” nucleotide
sequence with some other sequence as a sequence of symbols U, G, M, and N, whose length exceeds that
of the reference sequence by the total lengths of all gaps in that sequence within a local alignment. For
the � rst phase of the statistical analysis, we ignore the distinction between G, M, and N and work with
a sequence of 0’s (instead of U) and 1’s (instead of G, M, and N). The goal of this section is to extract
“modes” from this sequence of 0’s and 1’s.

A classic HMM for this sequence, in which each state emits either 0 or 1 according to a certain
distribution determined solely by the state, would work poorly. The problem lies in the fact that the run
lengths of 0’s and 1’s are very large. The histograms of the run lengths of 0’s and 1’s are provided in Fig. 2.
Since states in an HMM represent modes of context in the sequence, we expect a region of a � xed state to
cover multiple runs of 1’s and 0’s. Otherwise, the separation of the sequence into regions of different states
is overlocalized. For a region in state m, every observation 0 or 1 is generated independently according to
the probability mass function .p0.m/; p1.m//. The expected run lengths of 0’s and 1’s are 1=p1.m/ and
1=p0.m/, respectively. Hence, if p1.m/ and p0.m/ are not very close to the extreme values 0:0 and 1:0,
the expected run lengths of both 1 and 0 cannot be very large. For example, if p1.m/ < 0:9, the expected
run length of 1 is no greater than 10, and the probability of a run length being larger than 50 is only 0:005.
However, as indicated in Fig. 2, a vast majority of the run lengths in the sequence are longer than 50. For
the run lengths of 1’s, 99:98% of them are longer than 50. We thus expect an HMM that � ts the sequence
well tends to have states with either very high values or very low values of p1.m/. The long runs of 1’s are
generated by states with p1.m/ close to 1:0, and the long runs of 0’s are generated by states with p1.m/

close to 0:0. The estimated underlying states switch from one to another almost in synchronization with
the switch from a run of 1’s to a run of 0’s or vice versa. Such an HMM thus provides little information
regarding the context in the sequence.
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FIG. 2. Histograms of the run lengths of 0’s and 1’s in the alignment sequence. The ranges of the histograms
displayed are not complete.

The inappropriateness of the basic HMM to model the alignment sequence is also demonstrated by
experiments. For instance, we trained a basic HMM with 11 states on the entire sequence of human
chromosome 22. Except for one state with probability of occurring in the sequence as low as 6:4 £ 10¡9,
all the others fall into two groups. Those in the � rst group have p1.m/ > 0:999, and those in the second
have p1.m/ < 1:0 £ 10¡15. This HMM extracts essentially two modes of context: nearly zero percent of
alignment or nearly perfect alignment. The strong dependence among adjacent positions forces the HMM
to be overlocalized since the Markovian property assumed about states is the only mechanism to account
for the interposition dependence.

We propose an extended HMM that takes into consideration the strong interposition dependence and
in the mean time is capable of extracting modes of context. In the new model, the underlying states are
assumed to be � rst-order Markovian, just as in the basic HMM. The difference lies in the conditional
distribution of observations given states. In the basic HMM, it is assumed that given all the states, the
conditional distribution of observation xt at position t only depends on the state st at the same position,
that is,

P .x1; x2; : : : ; xT j s1; s2; : : : ; sT / D P .x1 j s1/P .x2 j s2/ ¢ ¢ ¢ P .xT j sT /: (1)

In the new model, we assume that given all the states, the conditional distribution of observation xt

at position t depends on the observation xt¡1 and state st¡1 at the previous position. In a sense, the
conditional independence assumption on observations in the basic HMM is replaced by a conditional � rst-
order Markovian assumption. This Markovian property of observations embedded in a state allows long
runs to occur without compromising the role of a state in representing context. Equation (1) is changed to

P .x1; x2; : : : ; xT j s1; s2; : : : ; sT / D P .x1 j s1/P .x2 j x1; s1/ ¢ ¢ ¢ P .xT j xT ¡1; sT ¡1/:

For an HMM with M states, we need to estimate 2M probability mass functions: P .xt D i j xt¡1 D
j; st¡1 D m/, i; j D 0; 1, m D 1; : : : ; M , as well as the state transition probability matrix, jjam;njj,
m; n D 1; : : : ; M . For notational simplicity, we write pj;i.m/ D P .xt D i j xt¡1 D j; st¡1 D m/. The new
HMM is referred to as the HMM with Markovian observations (HMMMO).

The structure of the model allows us to use a modi� ed version of the Baum–Welch algorithm (Baum
et al., 1970). Computation time is proportional to the product of the sequence length and the number of
states; so is the memory consumed. When dealing with sequences of length in the order of tens of millions,
a few gigabytes of memory are required. However, the memory requirement can be reduced to an order
proportional to the square root of the sequence length if we double the amount of computation. We present
here the original version of the estimation algorithm.

To estimate an HMM with Markovian observations by the maximum likelihood criterion, the EM al-
gorithm (Baum and Petrie, 1966; Baum et al., 1970) is applied. The EM algorithm estimates a model by
updating the parameters iteratively. Let Lm.t/ denote the conditional probability of being in state m at
position t given all the observations, and Hm;n.t/ denote the conditional probability of a transition from
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state m at position t to state n at position t C1 given all the observations, both computed from a current set
of parameters estimated. The reestimation formulae for the transition probabilities am;n, m; n D 1; : : : ; M ,
and the probabilities pj;i.m/, i; j D 0; 1, m D 1; : : : ; M , are

pj;i.m/ D

T ¡1X

tD1

Lm.t/I .xt D j /I .xtC1 D i/

T ¡1X

tD1

Lm.t/I .xt D j /

am;n D

T ¡1X

tD1

Hm;n.t/

T ¡1X

tD1

Lm.t /

;

where as usual I .¢/ is the indicator function that equals 1 when the argument is true and zero otherwise.
The probabilities Lm.t/ and Hm;n.t / can be computed ef� ciently by the forward–backward algorithm.
This algorithm was developed as a part of the Baum–Welch algorithm. For the HMMMO, because of the
Markovian assumption on observations given states, the forward–backward algorithm is modi� ed corre-
spondingly.

De� ne the forward probability ®m.t/ as the joint probability of observing the � rst t x¿ ’s, ¿ D 1; : : : ; t ,
and being in state m at position t . This probability can be evaluated by the following recursive formula:

®m.1/ D ¼mpx1.m/ 1 · m · M

®m.t/ D
MX

nD1

®n.t ¡ 1/pxt¡1;xt
.n/an;m 1 < t · T ; 1 · m · M:

The probabilities ¼m, m D 1; : : : ; M are the initial probabilities of the M states, which can be derived from
the transition probability matrix if we assume ¼m as the stationary frequency of state m. The probabilities
pi.m/, i D 0; 1, m D 1; : : : ; M are the marginal probabilities of the observations 0 and 1 in state m.
Assuming pi.m/ as the stationary frequency of i in state m, we can compute it from the conditional
distributions pj;i.m/, j D 0; 1.

De� ne the backward probability ¯m.t / as the conditional probability of observing x¿ ’s after position t ,
¿ D t C 1; : : : ; T , given the state at position t is m and the observation at t is xt . As with the forward
probability, the backward probability can be evaluated using the following recursion:

¯m.T / D 1

¯m.t / D pxt ;xtC1.m/

MX

nD1

am;n¯n.t C 1/; 1 · t < T :

The probabilities Lm.t/ and Hm;n.t/ are solved by

Lm.t / D P .st D m j x/ D
P .x; st D m/

P .x/

D 1
P .x/

®m.t/¯m.t/

Hm;n.t / D P .st D m; stC1 D n j x/

D 1
P .x/

®m.t/am;npxt ;xtC1 .m/¯n.t C 1/;

where P .x/ is the joint probability of observing all xt ’s, t D 1; : : : ; T , and P .x/ D
PM

mD1 ®m.t/¯m.t/

for any t .
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The number of states in the HMM is chosen by the Bayesian Information Criterion (BIC) (Schwarz,
1978). By BIC, the optimal model maximizes the penalized log likelihood logP .x/ C k

2 log T , where k,
increasing with the number of states, is the number of parameters in the HMM. For an HMMMO with M

states, the number of parameters to specify the transition matrix jjam;njj is M.M ¡ 1/, and the number of
parameters needed to describe the Markov chain of 0 and 1 in each state is 2. Hence, the total number of
parameters in an HMMMO is M.M ¡ 1/ C 2M D M2 C M . The number of states selected by BIC for the
VCFS sequence is 4. Constraints can also be put on the state transition probabilities am;n to reduce the
complexity of an HMM. For instance, we may constrain am;n to be the same for all n 6D m. One motivation
to use the constrained model is that the estimated values of am;n, n 6D m, are often at the order of 10¡5

or smaller. A sequence of length around one million, such as the VCFS region, cannot provide suf� cient
amount of data to estimate these am;n. More robust estimation can be achieved by using the model with
reduced complexity. The preference to the constrained model is also supported by BIC as the penalized
log likelihood of this model is higher than that of the unconstrained one.

According to the HMM, a subsequence fxt1 ; xt1C1; : : : ; xt2g with states � xed as m is a Markov chain
switching between two symbols: 0 and 1. The transition probabilities of the Markov chain are pi;j .m/,
i; j D 0; 1. Matched, Non-matched and Gap base pairs are not distinguished by this Markov chain. To
model the alignment sequence with four possible symbols, we assume that within a run of 1’s in state m,
the sequence of M, N, and G, denoting matched, nonmatched and gap, respectively, is a Markov chain. The
transition probabilities of the Markov chain vary with state m. The initial probabilities of M, N, and G are
¼M.m/, ¼N.m/, and ¼G.m/. We have ¼G.m/ D 0:0 since at the initial position of a run of 1’s, gap never
occurs. Denote the transition probabilities between M, N, and G within a run of 1’s in state m by Na°;³ .m/,
°; ³ D M; N; G, m D 1; 2; : : : ; M . Denote the sequence of 4 symbols by fy1; y2; : : : yT g. The sequence
fx1; x2; : : : ; xT g is formed by setting xt D 0 if yt D U (unaligned), and xt D 1 otherwise. Given the HMM
trained from fxtgT

tD1, the maximum likelihood estimation of Na°;³ .m/ is

Na°;³ .m/ D

T ¡1X

tD1

Lm.t /I .yt D ° /I .ytC1 D ³ /

X

³

T ¡1X

tD1

Lm.t /I .yt D ° /I .ytC1 D ³ /

¼° .m/ D

T ¡1X

tD1

Lm.t/I .xt D 0; xtC1 D 1/I .ytC1 D ° /

T ¡1X

tD1

Lm.t/I .xt D 0; xtC1 D 1/

° ; ³ D M; N; G:

The above estimation is essentially the computation of the empirical frequencies of all the transitions.
Each count is weighted by the posterior probability of being in state m at the corresponding position if
the Markov chain to be estimated is for state m.

To sum up, within one state m, the sequence of four symbols is modeled by two embedded Markov
chains. The � rst Markov chain speci� es statistically the transition between 0 (unaligned base pairs) and
1 (all the other possible base pairs). The second Markov chain speci� es the transition between M, N, and
G within a run of 1’s. It is straightforward to see that the statistical model characterized by these two
embedded Markov chains is equivalent to a Markov chain with the four symbols: U, M, N, and G. Denote
the transition probabilities of this Markov chain by a°;³ .m/, °; ³ D U; M; N; G. Then,

a° ;³ .m/ D

8
>>>>><

>>>>>:

p0;0.m/ ° D ³ D U

p0;1.m/¼³ ° D U; ³ 6D U

p1;0.m/ ° 6D U; ³ D U

p1;1.m/ Na°;³ .m/ ° 6D U; ³ 6D U:

Denote the Markov chain in state m by Pm.
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III. SIGNIFICANCE OF HIGH-SCORING SEGMENTS

Given a long gap-free alignment composed of only matched and nonmatched base pairs, we are concerned
with its statistical signi� cance. We assign each possible symbol ° 2 fU; M; N; Gg a score Z, e.g., ZM D 1,
ZN D ¡1, ZU D ZG D ¡L, where L À 1. The score of a segment of symbols is de� ned as the sum of
the scores of all the positions in the segment. A long gap-free alignment with high percentage of M yields
a high segment score.

Theorems of Karlin and Dembo (1992) laid the foundation for assessing the statistical signi� cance of
a high-scoring segment in a Markov chain. These theorems enable us to compute the limit probability of
a sequence generated randomly by the Markov chain having its maximal segment score exceeding that
of a given segment, or in some cases, to obtain bounds for the probability. The limit is taken with the
sequence length approaching in� nity. A low probability value indicates the high score of the segment is
statistically signi� cant. Being imprecise with terminology, we refer to the probability as the p-value of the
segment for simplicity. If we want to test the null hypothesis that a sequence is generated by a Markov
process, the maximal segment score of the sequence will be identi� ed. The null hypothesis is rejected with
p-value equal to the probability of a sequence generated randomly by the same Markov process containing
segments with higher scores. Next, we discuss the application of theorems of Karlin and Dembo (1992)
to our scoring scheme.

Consider a Markov chain P with r possible symbols, denoted by fY1; Y2; : : : ; YT g, Yt 2 0 D
f³1; ³2; : : : ; ³r g. Let the transition probability matrix of the Markov chain be P D jjp° ³ jj, °; ³ 2 0.
For each transition from symbol ³i to ³j , a score Z³i ;³j is assigned. Assigning a score to each symbol ³j

can be viewed as a special case of assigning scores to transitions, in which Z³i ;³j are the same for a � xed
³j and different ³i ’s. Given a realization fyt gT

tD1 of the Markov chain with y0 D ° , the score of a segment
fyt1 ; : : : ; yt2 g is

Pt2¡1
¿Dt1

Zy¿ ;y¿ C1 ; and the maximal segment score is M° .T / D max1·t1·t2·T

Pt2¡1
¿ Dt1

Zy¿ ;y¿ C1 .
To apply theorems of Karlin and Dembo (1992), we make the following assumptions about the Markov

chain P :

1. The Markov chain P is irreducible and aperiodic.
2. The negative drift condition is

E[Z] D
X

³i ;³j

¼³i
p³i ;³j

Z³i ;³j
< 0;

where ¼³i is the stationary frequency of ³i , determined by the transition probability matrix P. Note
p³i ;³j is the transition probability speci� ed in P.

3. For each symbol ³i , there exists a symbol ³j such that p³i ;³j
> 0, Z³i ;³j

> 0, and a symbol ³k such
that p³i ;³k

> 0, Z³i ;³k
< 0. Or, more generally, there exists ³i and a sequence y0 D ³i , y1; : : : ; ym D ³i ,

such that P f
Pk¡1

¿ D0 Zy¿ ;y¿ C1 > 0; k D 1; : : : ; m ¡ 1 j y0 D ym D ³ig > 0.

If scores Z³i ;³j
, i D 1; 2; : : : ; r , are nonlattice (Karlin and Dembo, 1992), then

lim
T !1

P

»
M° .T / ¡ ln T

µ¤ > z

¼
D 1 ¡ exp.¡K¤e¡µ ¤z/;

where K¤ and µ ¤ are constants determined by the transition probability matrix P and the scores Z³i ;³j .
De� ne matrix

8.µ/ D jjp°;³ eµZ°;³ jj:

The constant µ ¤ is the unique positive solution of the equation ½.µ/ D 1, where ½.µ/ is the dominant
eigenvalue of the matrix 8.µ/. Algorithms for computing constants K¤ and µ¤ are presented in the
appendix.
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If scores Z³i ;³j are lattice of span ± (± is the largest number of which all the Z³i ;³j ’s are multiples),

1 ¡ exp.¡K¤e¡µ¤z/ · lim inf
T !1

P

»
M° .T / ¡ ln T

µ ¤ > z

¼

· lim sup
T !1

P

»
M° .T / ¡ ln T

µ¤ > z

¼

· 1 ¡ exp.¡KCe¡µ¤z/ (2)

where KC D eµ¤±K¤.
For integer scores Z³i ;³j

with the maximum common divisor equal to 1, the scores are lattice of span
± D 1. We use Inequality (2) to compute the p-value of a high-scoring segment. When T is suf� ciently
large, P fM° .T / ¡ ln T

µ¤ > zg is bounded between 1 ¡ exp.¡K¤e¡µ¤z/ and 1 ¡ exp.¡KCe¡µ¤z/. For a
high-scoring segment with score ln T

µ¤ C z, the upper bound 1 ¡ exp.¡KCe¡µ¤z/ provides a “conservative”
p-value for the segment. Since KC D eµ¤

K¤, KC is close to K¤ when µ ¤ is close to zero. In this case,
the upper bound is close to the real probability P fM° .T / ¡ ln T

µ¤ > zg.
For the alignment sequence of four symbols fyt gT

tD1, we focus on the special case of assigning a score
to each symbol. For brevity, we denote the scores by ZM D 1, ZN D ¡1, ZU D ZG D ¡L, L À 1. Based
on the HMM trained from the sequence of 0’s and 1’s, i.e., fxt gT

tD1, a Markov chain characterizing fyt gT
tD1

is estimated within each state of the HMM. For the 4-state HMM, optimal according to BIC, the Markov
chain within each state is irreducible and aperiodic. The negative drift condition is satis� ed with suf� ciently
large L. We set L D 400 in our experiment. When L is very large, a high-scoring segment cannot contain
any G or U, since one such symbol can lower the score of the entire segment to a negative value. Therefore,
a segment with a high score is simply a long gap-free alignment with a high percentage of M. Therefore, the
exact score values assigned to G and U have little effect on p-values, which is demonstrated by experiments.

The constants K¤, KC, and µ¤ of Markov chains Pm, m D 1; : : : ; 4 are listed in Table 3. The percentage
of unaligned base pairs in each state, indicating alignability, and the stationary frequency of each state are
presented in Table 1.

Assume a state sequence fst gT
tD1 is generated randomly according to the Markov chain governing the

states of an HMM. The initial probabilities of the states are the stationary frequencies of the states ¼m,
m D 1; 2; : : : ; M , where M D 4 for the HMM trained from the VCFS sequence. A sequence fy 0

t gT
tD1 of

symbols U, G, M, and N are generated based on the state sequence fstgT
tD1. Within a region of a � xed

state m, t1 · t · t2, the sequence fy0
t g

t2
tDt1

is generated by the corresponding Markov chain in state m,
Pm. When T ! 1, with probability 1, the percentage of positions in state m is ¼m. Hence, when T is
large, the number of positions in state m is approximately ¼mT . By Inequality (2), the probability that the
maximal segment score of positions in state m exceeds z C ln ¼mT

µ¤.m/ is bounded as follows:

1 ¡ exp.¡K¤.m/e¡µ¤.m/z/ · P

»
M° .T ; m/ > z C ln ¼mT

µ ¤.m/

¼

· 1 ¡ exp.¡KC.m/e¡µ¤.m/z/:

Notations µ ¤.m/, K¤.m/, and KC.m/ are used to stress that these constants are determined by the Markov
chain Pm. The fact that positions in state m may not be consecutive is ignored as the average run length of

Table 3. Constants of the Markov Chain in Each
State Used for Computing p-Values

State 1 2 3 4

µ¤ 0.0959 0.1142 0.1132 0.1079
K¤ 0.0001 0.0261 0.0085 0.0325
KC 0.0001 0.0292 0.0095 0.0362
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one state is much larger than the lengths of high-scoring segments we consider. In the sequel, sequences in
discussion are assumed to be realizations of the 4-state HMM with a Markov chain embedded in each state.

The p-value as a function of the segment score Nz for the Markov chain of each state m is

pv.Nz; m/ D 1 ¡ exp.¡KC.m/e
¡µ¤.m/. Nz¡ ln ¼mT

µ ¤.m/
/
/;

which is plotted in Fig. 3.
Suppose we compare the statistical signi� cance of two high-scoring segments in two regions with great

difference in divergence rate. To take into account the “background” difference of the two segments, for
each region, we compute the conditional probability distribution of the state of a randomly selected position
from the region given the entire observed sequence. Assume a region ranges from t1 to t2 and t is a position
randomly selected from the region, the conditional probability P fst D m j y1; y2; : : : ; yT g is

P fst D m j y1; y2; : : : ; yT g D

t2X

¿Dt1

Lm.¿ /

t2 ¡ t1 C 1
;

where Lm.¿ / is the conditional probability of position ¿ being in state m given the observed sequence
fy1; y2; : : : ; yT g. The forward–backward algorithm is used to compute Lm.¿ /. If a state is selected randomly
according to the distribution P fst D m j y1; y2; : : : ; yT g, m D 1; 2; : : : ; M , then the probability of the
maximal segment score of positions in the state exceeding a score Nz is the weighted sum of the p-values
pv.Nz; m/; that is,

Npv.Nz/ D
MX

mD1

P fst D m j y1; y2; : : : ; yT gpv.Nz; m/:

We use Npv.Nz/ as a measure of the statistical signi� cance of a segment with score Nz in the region t1 · t · t2.
For simplicity, we refer to Npv.Nz/ as the p-value of a segment with score Nz. Although pv.Nz; m/ decreases
with the increase of Nz for all m, Npv.Nz/, incorporating information about background alignability, may yield
a lower value for smaller Nz if the segment locates in a region with poorer alignability and hence is more
signi� cant relative to its background.

To compute the p-value of a segment without its background region speci� ed, we use a window centered
around the segment as the background. The window size is the average run length of a state in the HMM.

FIG. 3. The p-value as a function of the segment score for the Markov chain in each state.
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For the 4-state HMM trained from the VCFS sequence, the average number of positions staying in one
state is about 14,200. Table 2 presents the p-values of three segments, which locate separately in the three
PIP panels in Fig. 1. Background regions used for the three segments are windows centered around them.
Note that due to the poor alignability of its background region, the � rst segment has a smaller p-value
than the third one although its score is lower.

IV. EXAMPLE: g -GLOBIN REGULATORY ELEMENT

This section illustrates the generality of our use of Markov models of alignments to assign a statistical
signi� cance to highly conserved regions. We show that the approach can be applied to multiple (as well as
pairwise) alignments and can be used to � nd regions with high levels of divergence (as well as similarity).
We also illustrate some of the � exibility in assigning scores to columns.

In higher primates, the ° -globin gene is expressed in the fetus, whereas in lower primates it is expressed
earlier during development. For instance, in humans (which have two nearly identical copies of the gene), it
is expressed fetally, while lemurs express it in the embryo. To � nd the signals in genomic DNA responsible
for this difference, one might align, say, the 1,000 bp immediately upstream (a typical location for regulatory
elements) of the ®-globin gene for several higher primates and several lower primates, then look for regions
where the sequences from the higher primates agree with each other but not with the lower primates.

We did just that, using the sequences from human, rhesus monkey, and woolly monkey (higher primates),
as well as tarsier and galago (lower primates). Sequences were aligned using the MultiPipMaker Web site
(Schwartz et al., 2000): www.bio.cse.psu.edu/.

Frequently, gene regulation is performed by transcription factors that permit a certain level of deviation
from the consensus binding pattern. Hence, we did not want to require absolute identity among the three
higher primate sequences. De� ne an alignment column to be of class 1 if the three higher primates have
the same nucleotide and each lower primate has a different letter. A column is in class 2 if the three higher
primates have two different nucleotides among them and each lower primate has a different letter. All other
columns are in class 3. We decided to give columns a score of 4, 2, or –1, if they are in class 1, 2, or 3,
respectively.

We used an algorithm (Huang et al., 1994) that locates regions of high total score within the alignment.
The algorithm runs in time proportional to the length of the alignment and identi� es regions whose total
score cannot be improved either by expanding or shrinking the run of columns. (In case of a tie, the
algorithm picks the longer run.) The three highest scoring regions are as follows.

region 1 region 2 region 3
human AAAATTGGTACAT GCTAAAGGGAAGAATAAATT GGCGGCTGGCTAGGGATG

rhesus ............. .................... ..................

woolly .......TC.... .......AAG.T........ ..T..G............

tarsier GTT...T..CT.G A.C.....A.-----....G AAA.---.T.A.AT..CA

galago ------------- -------------------- A.G.---...C.A....A

class 1113331331131 13133333331211133331 132312133313133331

Here we use a dot to indicate a nucleotide that is identical to the � rst one in its column. Dashes indicate a gap.
The regions have respective scores 22, 18, and 18 and approximate p-values 0.15, 0.39, and 0.39. The

third region is known to be critical for the difference in expression patterns of the ®-globin gene between
higher and lower primates, and it was initially located by visually inspecting short pairwise alignments for
sequencedifferences, a procedure thatwas called differentialphylogeneticfootprinting(Gumucio et al., 1994).

Other ways of scoring the alignment columns do a better job of emphasizing the third region. For
instance, we can down-weight the potential contribution of gaps in the sequences of lower primates as
follows. Consider a column formerly in class 1 or 2 to be in class 4 if it contains a gap symbol that
immediately follows a gap symbol in the same row. Give columns in class 4 the score 0, keeping other
scores the same. Now, region 3 scores 12, which ties it with another region for the highest scoring segment
within the aligning kilobase sequences, with an estimated signi� cance of 0.48. This example illustrates
the subtle issues that may be involved in selecting column scores that best reveal a desired biological
phenomenon, particularly with multiple alignments.

http://www.bio.cse.psu.edu/
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Table 4. Characteristics of the Four States in the HMM
Trained on the Chromosome 22 Sequencea

State 1 2 3 4

Unaligned 99.94% 63.85% 86.84% 28.33%
Occupied 28.89% 31.22% 19.73% 20.16%

aFirst row: the percentage of unaligned base pairs in each state. Second row: the sta-
tionary frequency of each state.

V. HUMAN CHROMOSOME 22

The above approach to computing p-values is used to analyze the entire sequence of human chromosome
22, consisting of roughly 47.7 M base pairs. The aligned sequence comprises � ve symbols: U (unaligned
position), G (gap), M (match), S (transition), and V (transversion). The symbols S and V are both treated as N

in the VCFS sequence. Scores assigned to these � ve symbols are ZM D 1, ZS D ¡1, ZV D ZG D ZU D ¡3.
An HMM is trained on the 0/1 sequence converted from the aligned sequence by setting U to 0 and all

the other symbols to 1. The optimal number of states selected by BIC for the HMM is four. Characteristics
of the four states are summarized in Table 4, the � rst row being percentages of unaligned positions in the
states, and the second being the stationary frequencies of the states. The constants K¤, KC, and µ¤ for
computing p-values within States 2, 3, and 4 are listed in Table 5. For State 1, the Markov chain is not
irreducible because once it enters U, it will never transit to another symbol. Hence, the Markov chain in
this state cannot yield a positive-scoring segment when it becomes stationary. State 1 apparently results
from the nearly 13 M straight U’s at the beginning of the chromosome-22 sequence. This state does not
affect the computation of the p-values since its posterior probability given a region containing aligned
segments is zero. If a three-state HMM is trained on the sequence with the beginning 13 M straight U’s
deleted, the three states are expected to be roughly the same as States 2, 3, and 4 in this four-state HMM
trained from the entire sequence.

The p-value as a function of the score based on each Markov chain in States 2, 3, and 4 is plotted in
Fig. 4. Compared to the other two states, State 4 corresponds to the most conserved background, so a
segment with a � xed score arisen in this state is least signi� cant, re� ected by the highest p-value. State 3
has the highest divergence rate among the three and yields the lowest p-values consequently.

To demonstrate the effect of different divergence rates on the computation of p-values, the p-values of a
collection of segments scoring from 110 to 170 are plotted in Fig. 5. This collection is not the complete set
of segments in the chromosome-22 sequence with scores in that range. In the � gure, for any given score,
only segments with either very low p-values or very high p-values are shown. It is demonstrated that the
p-value of a segment may differ enormously due to different levels of background conservativeness.

In Fig. 6, an example region with a number of high-scoring segments is shown. The � rst three panels
plot the posterior probability of being in States 2, 3, and 4 at each base pair position given the entire
sequence. State 1 is not displayed as the posterior probability of being in it is nearly zero across this
entire region. In addition, the posterior probabilities of being in the four states sum up to 1 and hence
possess only three degrees of freedom. To save memory, the posterior probabilities are averaged across
every 100 base pairs. A large probability in State 4 indicates a highly conserved region. Segments with the

Table 5. Constants of the Markov Chains in 3 States
of the HMM Trained on the Chromosome 22

Sequence Used for Computing p-Values

State 2 3 4

µ¤ 0.1276 0.1298 0.1115
K¤ 0.0089 0.0028 0.0158
KC 0.0101 0.0032 0.0177
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FIG. 4. The p-value as a function of the segment score for the Markov chains in States 2, 3, and 4 of the chromosome
22 sequence.

same score tend to have higher p-values (less signi� cant) if the posterior probability of being in State 4 is
large. The fourth panel shows the scores of eight segments of lengths around 200, marked at their center
positions. The � fth panel shows the p-values of the eight segments, the � rst three of which locate in a
less-conserved background than do the other � ve. The p-value of the third segment with score 144 is the
lowest although three other segments have higher scores of 156, 153, and 161.

It takes roughly six hours to train the four state HMM for the chromosome-22 sequence on a 700 MHz
PC with Linux OS and about 7:1 minutes to train the embedded Markov chains within each state. To obtain
p-values for segments in the aligned sequence, the posterior probability of being in each state at each base

FIG. 5. The p-values of a set of high-scoring segments.
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FIG. 6. An example region in the aligned chromosome 22 from positions 35.5M to 35.9M. (a)–(c) The posterior
probability of being in State 2, 3, and 4, respectively. (d) The scores of high-scoring segments displayed at their center
positions in this region. (e) Corresponding p-values of these segments.
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pair position needs to be computed. These posterior probabilities can be evaluated in one run, which takes
about 7:25 minutes on the 700 MHz PC, and stored for later use. The amount of time necessary to compute
the constants µ¤, K¤, KC and to compute the p-value of a segment using those constants and the prestored
posterior probabilities is negligible, substantially lower than one second.

VI. DISCUSSION

Partitioning the genome along the lines discussed here has the potential of determining whether the
human genome falls naturally into some number of divergence levels. Koop (1995) detected three levels of
human–mouse divergence in noncoding regions, but that observation was based on inspection of only � ve
genomic loci. It remains to be seen whether the classi� cation of genomic regions according to “alignability”
is discrete or continuous. A natural comparison is with isochores, i.e., genomic regions of more-or-less
constant percentage of C and G nucleotides (as opposed to A and T). The human genome has been asserted
(Bernardi et al., 1985; Bernardi, 2000) to fall into � ve isochore types, with isochores generally being at
least 200 kb in length, and with fairly sharp boundaries between successive isochores. Even now, with the
human genome sequence largely in hand, the theory remains controversial.

The existence of differences in evolutionary rate between different parts of the genome should not
come as a complete surprise. It has been known for years that there are positional differences in the rates
that DNA is damaged and repaired, a fact of considerable interest to those studying evolution (Boulikas,
1992) and cancer (Bohr et al., 1987). However, a mechanism that creates divergence-rate differences on a
genome-wide scale has yet to be identi� ed.

A natural way to begin seeking biological explanations for these differences is to ask whether divergence
rate is correlated with other varying genomic properties, such as GC level, recombination rate, gene density,
and position in the nucleus. An exciting prospect is that segmenting the human genome according to rate of
sequence conservation with the mouse will reveal a pattern that provides a clue to the biological mechanism
for the rate variation.

APPENDIX

We present here the algorithms for computing K¤ and µ¤ of a Markov chain with scores ZM D n1,
ZN D ¡n2, ZU D ZG D ¡m, where m; n1 > 0; n2 ¸ 0; and n1 and n2 are prime to each other, or n1 D 1
and n2 D 0. To constrain high-scoring segments to gap-free alignments, we require m À n1 and m À n2.
For very large m, as discussed in Section III, the exact value of m has little effect on the constants, and
hence p-values. We restrict the greatest common divisor of n1 and n2 to be 1 so that the span of scores
is 1. If the greatest common divisor of n1 and n2 is not 1, we can always scale the scores by the common
divisor. Any segment score is then scaled by the same factor, so the p-values can be computed with the
new set of scores.

Readers are referred to Karlin and Dembo (1992) for the general algorithms on computing K¤ and µ ¤

with integer scores of span 1. With signi� cant computational simpli� cation, the algorithm for computing
K¤ provided here is an approximation to the general algorithm of Karlin and Dembo (1992). Errors resulted
from the approximation decay exponentially quickly with m. For the scores we consider, m is usually in
the order of hundreds. Consequently, imprecision caused by the approximation is negligible.

Denote the transition probability matrix of the Markov chain by P D jjp° ³ jj. The element p° ³ in P is the
probability of entering state ³ given that the current state is ° . The four symbols are put in the order U, G, M,
N. For instance, the entry on the second row and the third column of P is the transition probability from G

to M. The score of symbol ° is Z° , ° 2 S D fU; G; M; Ng. De� ne matrix 8.µ/ D jjp° ³ eµZ³ jj, that is, 8.µ/

is obtained from P by multiplying its ³ th column by eµZ³ . The stationary mean score E[Z] D
P

° ¼° Z° ,
where ¼° is the stationary frequency of symbol ° according to the transition probability matrix P. The
value E[Z] is negative by assumption. De� ne I as the set of integers between ¡m and n1. Partition P in
the form P D

P
i2I P.i/ , where P.i/ D jjp.i/

° ³ jj, p
.i/
° ³ D I .Z³ D i/p° ³ , where as usual I .¢/ is the indicator

function. In particular, P.i/ D 0 if i 6D n1; ¡n2; ¡m. If we write P D .p1; p2; p3; p4/, where pj ’s are
column vectors, then P.n1/ D .0; 0; p3; 0/, P.¡n2/ D .0; 0; 0; p4/, P.¡m/ D .p1; p2; 0; 0/.
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The algorithms for computing K¤ and µ ¤ are outlined below. The third step, which is the key step for
computing K¤, is expanded next.

1. Determine µ¤ > 0 such that ½.µ¤/ D 1, where ½.µ/ is the maximum eigenvalue of matrix 8.µ/. As
½.µ/ is convex (Karlin and Dembo, 1992), µ¤ can by searched by a simple doubling and halving routine
that converges rapidly.

2. Determine the right frequency eigenvector u¤ D u.µ¤/ of 8.µ¤/.
3. Compute matrices Q.i/ , i D ¡1; ¡2; : : : ; ¡m and Q D

P¡1
iD¡m Q.i/. Also compute G.j /, j D

1; 2; : : : ; n1 and G D
Pn1

jD1 G.j /. Q.i/ and G.j / are substochastic matrices, and Q and G are stochastic

matrices. The computation of Q.i/ and G.j / will be presented in a moment.
4. Determine the stationary frequency vectors of Q and G, i.e., zQ D z and wG D w.
5. Compute K¤ D v.1/c.1/, where

c.1/ D

*

w;

0

@I ¡
n1X

jD1

G.j /e¡µ¤j

1

A 1

u¤

+

*

w;

0

@
n1X

jD1

jG.j /

1

A e

+
.eµ¤ ¡ 1/

v.1/ D

*

z;

Á

I ¡
¡1X

iD¡m

Q.i/eµ ¤i

!

u¤

+

E[Z]

*

z;

Á ¡1X

iD¡m

iQ.i/

!

e

+ ;

where I is the identity matrix, e D .1; 1; 1; 1/t , and 1
u¤ denotes the vector formed by taking the reciprocal

of each element of u¤, i.e., .1=u¤
1; 1=u¤

2; 1=u¤
3; 1=u¤

4/t . The notation h¢; ¢i means the inner product of
the two vectors.

To compute Q.i/ and G.j /, we introduce the following de� nitions. Let OP.i/ D .I ¡ P.0//¡1P.i/ . If n2 6D 0,
P.0/ D 0. Hence OP.i/ D P.i/ . Let Du¤ D diag.u¤

1; u¤
2; u¤

3; u¤
4/ be the diagonal matrix with the components

of u.µ¤/ on the diagonal, and OT.i/ D eµ¤iD¡1
u¤ OP.i/Du¤ . Note OT.i/ D 0 if i 6D n1; ¡n2; ¡m.

Compute G.j /, j D 1; 2; : : : ; n1 by the following recursive formula. G.l/ D 0 for l > n1.

1. G.j /
.1/ D OT.j /.

2. G.j /
.k/ D OT.j / C OT.¡n2/

P
l G.l1/

.k¡1/ ¢ ¢ ¢ G.l¾ /
.k¡1/. The sum is over the index range 1 · l1; l2; : : : ; l¾ · n1,

l1 C l2 C ¢ ¢ ¢ l¾ D j C n2 and l¾ ¸ j , where ¾ is any positive integer that yields a valid set of l1; ¢ ¢ ¢ ; l¾ .

G.j /
.k/ converges to G.j / geometrically. The recursive formula is an approximation to that of Karlin and

Dembo (1992). If n1 D 1, G.1/ can be computed by the exact recursive formula

G.1/
.k/ D OT.1/ C OT.¡n2/.G.1/

.k¡1//
n2C1 C OT.¡m/.G.1/

.k¡1//
mC1:

The third term in the sum is omitted in the approximation since m À n1 and m À n2.
Compute G D

Pn1
jD1 G.j /. For scores we consider, since OT.j / D 0, if j 6D n1 and j > 0, and OT.n1/ is

of form .0; 0; p; 0/, i.e., only the third column vector is nonzero, G.j /, j D 1; 2; : : : ; n1, are also of form
.0; 0; p; 0/. Hence, so is G. As G is a stochastic matrix (Karlin and Dembo, 1992), G D .0; 0; e; 0/, where
e D .1; 1; 1; 1/t , for any n1; n2, and m.



SIGNIFICANCE OF INTERSPECIES MATCHES 553

To compute Q.i/, i D ¡1; ¡2; : : : ; ¡m, � rst compute Q.i/ for ¡n2 · i · ¡1 and i D ¡m by the
following recursive formula. Let Q.i/ D 0 for i < ¡m.

1. Q.i/
.1/ D OP.i/. Note OP.i/ D 0 if i 6D ¡n2; ¡m and i < 0.

2. Q.i/
.k/ D OP.i/ C OP.n1/

P
l Q.l1/

.k¡1/Q
.l2/
.k¡1/ ¢ ¢ ¢ Q.l¾ /

.k¡1/. The sum is over the index range ¡m · l1; l2; : : : ; l¾ ·
¡1, l1 C l2 C ¢ ¢ ¢ l¾ D i ¡ n1, and if i D ¡m, l¾ D ¡m, if i 6D ¡m, ¡n2 · l¾ · i , where ¾ is any
positive integer that yields a valid set of l1; l2; : : : ; l¾ .

Q.i/
.k/ converges to Q.i/ geometrically. Matrices Q.i/ , ¡m < i < ¡n2 can then be computed by the

following iterative procedure. Let R D I ¡ OP.n1/
P

l Q.l1/Q.l2/ ¢ ¢ ¢ Q.l´/. The sum is over the index range
¡n1 · l1; l2; : : : ; l´ · ¡1 and l1 C l2 C ¢ ¢ ¢ l´ D n1, where ´ is any positive integer that yields a valid set
of l1, l2; : : : ; l´ .

1. Set i D ¡m C 1.
2. Q.i/ D R¡1 OP.n1/

P
l Q.l1/Q.l2/ ¢ ¢ ¢ Q.l¾ /. The sum is over the index range i ¡ n1 · l¾ · i ¡ 1,

l1; l2; : : : ; l¾ ¡1 · ¡1, and l1 C l2 C ¢ ¢ ¢ l¾ D i ¡ n1.
3. Set i C 1 ! i . If i < ¡n2, go back to step 2; otherwise, stop.

Compute Q D
P¡1

iD¡m Q.i/ .
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